417 words
2 minutes
余弦退火学习率
CosineAnnealingLR
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=- 1, verbose=False)
parameter:
- optimizer (Optimizer)– Wrapped optimizer.
- T_max (int) – Maximum number of iterations.
- eta_min (float) – Minimum learning rate. Default: 0.
- last_epoch (int) – The index of last epoch. Default: -1.
- verbose (bool) – If
True
, prints a message to stdout for each update. Default:False
.
T_max决定学习率的波动周期,T_max=5时周期为5
CosineAnnealingWarmRestarts
torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, T_0, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False)
Parameter:
- optimizer (Optimizer) – Wrapped optimizer.
- T_0 (int) – Number of iterations for the first restart.
- T_mult (int*,* optional) – A factor increases T_i after a restart. Default: 1.
- eta_min (float*,* optional) – Minimum learning rate. Default: 0.
- last_epoch (int*,* optional) – The index of last epoch. Default: -1.
- verbose (bool) – If
True
, prints a message to stdout for each update. Default:False
.
具体地说,
- T_0:学习率第一次回到初始值的epoch位置
- T_mult:控制学习率变化的速度。学习率在
T_0
,(1 + T_mult)*T_0
,(1 + T_mult + T_mult^2)*T_0
…处将回到初始值。
Code
import torch
from torch.optim.lr_scheduler import CosineAnnealingLR,CosineAnnealingWarmRestarts,StepLR
import torch.nn as nn
from torchvision.models import resnet18
import matplotlib.pyplot as plt
model=resnet18(pretrained=False)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
mode='cosineAnnWarm'
'''
以T_0=5, T_mult=1为例:
T_0:学习率第一次回到初始值的epoch位置.
T_mult:这个控制了学习率回升的速度
- 如果T_mult=1,则学习率在T_0,2*T_0,3*T_0,....,i*T_0,....处回到最大值(初始学习率)
- 5,10,15,20,25,.......处回到最大值
- 如果T_mult>1,则学习率在T_0,(1+T_mult)*T_0,(1+T_mult+T_mult**2)*T_0,.....,(1+T_mult+T_mult**2+...+T_0**i)*T0,处回到最大值
- 5,15,35,75,155,.......处回到最大值
example:
T_0=5, T_mult=1
'''
if mode=='cosineAnn':
scheduler = CosineAnnealingLR(optimizer, T_max=5, eta_min=0)
elif mode=='cosineAnnWarm':
scheduler = CosineAnnealingWarmRestarts(optimizer,T_0=5,T_mult=1)
plt.figure()
epochs=50
dataloader = Dataloader()
cur_lr_list = []
for epoch in range(epochs):
for (data, label) in enumerate(dataloader):
train()
eval()
'''
这里scheduler.step(epoch + batch / iters)的理解如下,如果是一个epoch结束后再.step
那么一个epoch内所有batch使用的都是同一个学习率,为了使得不同batch也使用不同的学习率
则可以在这里进行.step
'''
# scheduler.step(epoch + batch / iters)
optimizer.step()
scheduler.step()
cur_lr=optimizer.param_groups[-1]['lr']
cur_lr_list.append(cur_lr)
print('cur_lr:',cur_lr)
x_list = list(range(len(cur_lr_list)))
plt.plot(x_list, cur_lr_list)
plt.show()